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Abstract

The thermoelastic behavior of composites with functionally graded interphase is analyzed by the multi-inclusion

model, where the explicit expressions for the e�ective thermoelastic moduli and thermoelastic ®eld of the composite
are obtained. This method is especially suitable for the analysis of functionally graded interphase because it allows
the arbitrary varying material properties in the interphase, allows a wide range of microgeometries of the composite,
allows determination of the complete set of thermoelastic moduli and ®eld, and is easy to implement. Its internal-

consistency is also examined. Numerical results for the e�ective thermoelastic moduli and thermoelastic ®eld of SiC
reinforced intermetallic matrix are given and discussed to demonstrate the applicability of the method. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are a new generation of composite materials characterized by a
continuously varying property due to a continuous change in the microstructure details from one surface
of the material to the other, such as composition, morphology, and crystal structure. The concept of
FGM is to take advantage of certain desirable features of each constituent phases and optimize the
distribution of material properties such as strength, hardness, thermal resistance, etc., so that the desired
responses to given mechanical and thermal loadings are achieved. FGMs can be used to improve
fracture toughness of machine tools, wear resistance and oxidation resistance of high temperature
aerospace and automotive components, and ballistic e�ciency of lightweight armor materials.

There are two major problems in the design of a FGM, aside from that of material selection; one is
determining the optimum spatial dependence for material properties, and the other is predicting the
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characteristic of a FGM for a given property pro®le (Markworth et al., 1995). In this work, we will
focus on the thermoelastic behavior of FGMs given a certain property pro®le, although the method can
also be used to study the e�ect of di�erent property pro®le on the material behavior. Various techniques
have been adopted to analyze the thermal stress in FGMs in the literature, including numerical
determination of residual stresses in FGMs based on continuum model (Delfosse et al., 1997), analysis
of residual stress in multi-layered FGMs using laminate theory (Shaw, 1998), study of random and
discrete microstructures in FGMs by a physically based computational micromechanics model (Dao et
al., 1997), analysis of thermal stresses in functionally graded particle-reinforced composite by Mori±
Tanaka model (Noda and Nakai, 1998), and a newly proposed higher order micromechanical theory for
FGMs with nonuniform ®ber spacing that explicitly couples the local and global e�ects (Aboudi and
Pindera, 1996). In general, these techniques are targeting at a particular microgeometry, such as
laminated, particle reinforced, or ®ber reinforced composites.

In this work we will study the thermoelastic behavior of composites with functionally graded
interphase. By the interphase we refer to the phase between matrix and reinforcement with continuously
varying material properties. Specially designed interphase are created in modern composites to improve
fracture toughness, chemical compatibility, and matching of thermal expansion coe�cients between
composite constituents. A signi®cant amount of work have been directed to generalize the
micromechanics theory of two-phase composite to composite with inhomogeneous interphase between
matrix and reinforcement. Hashin (1990) and Qiu and Weng (1991) suggested a recursive method for
axial and transverse bulk moduli, generalizing the composite cylindrical assemblage model (Hashin and
Rosen, 1964). Benveniste et al. (1989) and Dunn and Ledbetter (1995) applied Mori and Tanaka (1973)
method to composite with coated inclusion. Chu and Rokhlin (1995) have extended the generalized self-
consistent model (Christensen and Lo, 1979) to composite with multi-layered ®bers, where the transverse
shear modulus can be obtained by a transfer matrix algorithm. This technique was later adopted by
Huang and Rokhlin (1996) to an interphase with continuously varying properties. A closed form
solution is obtained by Lutz and Ferrari (1995) for the stresses and displacements in and around ®ber of
a ®brous composite, taking into account of e�ect of inhomogeneous interphase. Our work is based on
the multi-inclusion model proposed by Nemat-Nasser and Hori (1993) to predict the e�ective elastic
moduli of multi-phase composites, see also Hori and Nemat-Nasser (1994). This model is especially
suitable for composite materials with functionally graded interphase, where the interphase can be
assumed to be composed of in®nite number of layers with similar and coaxial ellipsoidal shape and
uniform material properties, so that the strain and stress in the interphase can be estimated by Eshelby's
equivalent-inclusion concept (Eshelby, 1957) and Tanaka±Mori theorem (Tanaka and Mori, 1972). The
ellipsoidal shape of the interphase enables us to simulate a wide range of microgeometries of composite,
ranging from ¯akes to continuous ®bers. Here we have generalized this model to analyze thermoelastic
behavior of composite materials so that the e�ective thermal expansion coe�cient and residual stress
can be obtained, as well as the e�ective elastic moduli. The advantages of this method are as follows: (1)
the complete set of thermoelastic moduli and thermoelastic ®eld in the composite can be obtained; (2) a
wide range of microgeometries can be studied; (3) the formalism is explicit and closed form expression
can be obtained if desired; (4) the material properties can be varied in an arbitrary manner, and the
temperature distribution is not necessarily uniform.

The paper is organized in the following manner. Basic equations and notation will be introduced in
Section 2. The multi-inclusion model will be reviewed and generalized to study the thermoelastic
behavior of composite materials in Section 3; some theoretical considerations will also be presented,
where the multi-inclusion model is shown to be self-consistent. Composites with functionally graded
interphase is then analyzed in Section 4, where the explicit expressions for the e�ective thermoelastic
moduli as well as loading and residual ®elds of the composite are obtained. Some numerical results and
discussions are given in Section 5.
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2. Basic equations and notation

Let us consider the static thermoelastic behavior of a multi-phase composite consisting of a matrix,
and nÿ 1 reinforcements. The constitutive equation for phase r can be expressed as

sr � Crer � lry, �1�
or in inverse form

er � Drsr � ary, �2�
where s, e, and y are the stress and strain tensors, and temperature change with respect to a reference
temperature, respectively. C and D are elastic sti�ness and compliance tensors and are each other's
inverse. l and a are the thermal stress and strain tensors and satisfy relationship lr � ÿCrar: The
subscript r is used to denote the quantities belonging to phase r; it does not need to be uniform, in
general. It is noted that for the time being the temperature change, unlike other ®eld variables, is
regarded uniform over the composite.

The e�ective thermoelastic moduli can be de®ned for the composite under the assumption of
statistical homogeneity, in terms of average stress and strain in the composite

hsi � C�hei � l�y �3�
and

hei � D�hsi � a�y, �4�
where the superscript � is used to denote the e�ective properties of the composite, and h�i � �V��� dV
denotes an average over a representative volume element.

From now on let us focus on the boundary conditions of applied linear displacement u � e0x and
uniform temperature change y: The applied traction boundary condition can be analyzed in a similar
manner. For the thermoelastic behavior of heterogeneous materials, it is convenient to split the elastic
®eld into two parts according to the linearity, one due to the applied linear displacement u � e0x, the
loading ®eld I, and the other due to the temperature change y, the residual ®eld II (Kreher, 1988; Li and
Dunn, 1999). In light of this de®nition and the average strain theorem (see, e.g., Nemat-Nasser and
Hori, 1993), the constitutive equations for ®elds I and II can be written as

hsIi � C�e0 �5�
and

hsIIi � l�y: �6�
Eqs. (5) and (6) show that the e�ective elastic sti�ness tensor and thermal stress tensor can be obtained
from the average loading ®eld and residual ®eld, respectively. From Eqs. (5) and (1), and taking into
account of zero temperature change, the e�ective elastic sti�ness tensor can be written as

C� �
Xn
r�1

frCrAr, �7�

where fr is the volume fraction of phase r, and the elastic strain concentration factor Ar is de®ned by

heI
ri � Are0: �8�
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The e�ective thermal stress tensor can be obtained directly from Eq. (6), if the average stress in the
composite caused by the temperature change y is known. It can also be obtained from the thermal strain
concentration factor, noting that the strain in the individual phase does not disappear,

l� �
Xn
r�1

fr�Crar � lr �, �9�

with the thermal strain concentration factor ar de®ned by

heII
r i � ary: �10�

Eqs. (9) and (6) are equivalent. Another way to evaluate the e�ective thermal stress tensor is through
the elastic strain concentration factor Ar: As shown by Levin (1967) and Rosen and Hashin (1970),
there is an exact connection between the e�ective thermal stress tensor and the elastic strain
concentration factor

l� �
Xn
r�1

frA
T
r lr, �11�

where a superscript T is used to denote tensor transpose. A micromechanics model should give identical
thermal stress tensor using Eqs. (9) and (11), see Benveniste et al. (1991) and Li (1999).

3. Multi-inclusion model

In this section we will brie¯y review the multi-inclusion model proposed by Nemat-Nasser and Hori
(1993) for the e�ective elastic moduli of composite materials. We will also generalize this model to
analyze the thermoelastic behavior of composite materials. The foundation of multi-inclusion model is
the Tanaka and Mori (1972) theorem, that the average ®eld in an annulus embedded in an in®nite
medium only depends on the shapes and orientations of the ellipsoids. For a similar and coaxial multi-
inclusion embedded in an in®nite medium with the elastic sti�ness tensor C, as shown in Fig. 1, the
average strain in region r can be expressed as

Fig. 1. A multi-inclusion embedded in an in®nite medium of elastic moduli C. The eigenstrain in region r is eT
r :
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heri � SheT
r i, �12�

and the average stress is

hsri � C�Sÿ I�heT
r i, �13�

where eT
r is the eigenstrain in region r. S is the Eshelby tensor for the ellipsoidal inclusion, which is a

function of the elastic moduli of the in®nite medium, C, and the inclusion shape. I is the fourth-order
unit tensor. Note that since the series of ellipsoids are similar and coaxial, they all have identical
Eshelby tensor. The basic concept of multi-inclusion model is using the e�ective moduli of the multi-
inclusion to approximate the e�ective moduli of composite material, represented by the multi-
inhomogeneity embedded in an in®nite medium, as shown in Fig. 2. The question then is ®nding the
consistent eigenstrain in the multi-inclusion, to make the average ®eld in the multi-inclusion and multi-
inhomogeneity equivalent.

3.1. The e�ective elastic moduli

For the e�ective elastic moduli, we only need to consider loading ®eld I, the ®eld caused solely by the
applied linear displacement. The consistent equation for the multi-inclusion and multi-inhomogeneity is
then

Cr

ÿ
e1 � ed

r

� � C
ÿ
e1 � ed

r ÿ �eT
r

�
, �14�

where e1 is the uniform strain applied at the boundary of in®nite medium, while ed
r is the disturbance

strain ®eld due to the presence of the inhomogeneity, and �eT
r is the equivalent eigenstrain introduced to

make the ®eld in the multi-inclusion and multi-inhomogeneity consistent. Eq. (14) can be solved with
the disturbance strain ®eld given by Eq. (12) to yield

�eT
r � Lre1, �15�

where

Lr �
�
�Cÿ Cr �ÿ1Cÿ S

�ÿ1
: �16�

With equivalent eigenstrain known, the average stress and strain in the multi-inclusion (and thus, multi-
inhomogeneity) can be determined from Eqs. (12) and (13), plus the uniform stress and strain in the
in®nite medium,

heI
ri � �I� SLr �e1 �17�

and

hsI
ri � C

�
I� �Sÿ I�Lr

�
e1: �18�

The e�ective elastic moduli can then be obtained from the average ®eld in the multi-inclusion

C� � C
�
I� �Sÿ I�L

��I� SL�ÿ1 �19�
where
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L �
Xn
r�1

frLr �20�

It is clear from Eq. (19) that the e�ective moduli predicted by the multi-inclusion model depends on the
choice of elastic moduli of in®nite medium.

3.2. The e�ective thermal moduli

The e�ective thermal moduli are related to residual ®eld II, which is solely caused by the temperature

Fig. 2. A multi-inhomogeneity embedded in an in®nite medium of elastic moduli C, approximated by a multi-inclusion embedded

in an in®nite medium. The multi-inhomogeneity has elastic moduli Cr and eigenstrain eT
r , and the multi-inclusion has the e�ective

eigenstrain �eT
r :
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change y: Now di�erent phases has not only di�erent elastic moduli, but also di�erent eigenstrain due
to the mismatch between thermal moduli, see Fig. 2. The consistent equation for the multi-inclusion and
multi-inhomogeneity is then

Cr

ÿ
e1 � ed

r ÿ eT
r

� � C
ÿ
e1 � ed

r ÿ eT
r ÿ e��r

� � C
ÿ
e1 � ed

r ÿ e�r
�
, �21�

where eT
r � ÿCrlllry is the eigenstrain in phase r caused by temperature change, and e�r � eT

r � e��r is the
equivalent eigenstrain introduced to ensure the correspondence between the multi-inclusion and multi-
inhomogeneity. Solving the consistent equation (21), we have

e��r � LLLre1 � LLLr�Sÿ I�eT
r : �22�

The average strain in phase r is then

heII
r i � e1 � Se�r � �I� SLr �e1 � S

�
Lr�Sÿ I� � I

�
eT
r : �23�

The far-®eld strain e1 can be determined from the elastic boundary condition, which has two
possibilities. If the boundary is constrained, i.e., no displacement and strain is allowed, then according
to the average strain theorem, the average strain in the composite caused by the temperature change
should be zero, so that

e1 � ÿ�I� SL�ÿ1
Xn
r�1

frS
�
Lr�Sÿ I� � I

�
eT
r : �24�

On the other hand, if the boundary is free, i.e., no traction is applied, from the average stress theorem,
the average stress in the composite caused by the temperature change should be zero, so that

e1 � ÿ
�
I� �Sÿ I�L

�ÿ1Xn
r�1

fr�Sÿ I�
�
Lr�Sÿ I� � I

�
eT
r : �25�

The free boundary condition will be used when we study the residual stress in the composite with
functionally graded interphase in next section. For the e�ective thermal stress tensor we only need to
consider the constrained boundary condition, and the e�ective eigenstrain in phase r is

e�r � ÿLr�I� SL�ÿ1S
Xn
r�1

fr
�
Lr�Sÿ I� � I

�
eT
r �

�
Lr�Sÿ I� � I

�
eT
r , �26�

where Eq. (24) has been used. The e�ective eigenstrain and the corresponding thermal stress tensor of
the composite are then

e� � �I� LS�ÿ1
Xn
r�1

fr
�
Lr�Sÿ I� � I

�
eT
r �27�

and

l� � C�I� LS�ÿ1
Xn
r�1

fr
�
Lr�Sÿ I� � I

�
Cÿ1r lr: �28�

Again, the e�ective thermal stress tensor depends on the choice of the elastic moduli of in®nite medium.
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3.3. Some theoretical consideration

Here we present some theoretical aspects of multi-inclusion model. The ®rst question is whether Eq.
(19) is consistent with Eq. (7). To verify this, the connection between the applied strain e1 at the
boundary of in®nite medium and the actually applied strain e0 at the boundary of the composite should
be established. From the average strain theorem and the average stain in phase r, Eq. (17), we obtainedXn

r�0
fr�I� SLr �e1 � e0, �29�

so that

e1 � �I� SL�ÿ1e0, �30�
and ®nally we obtain the concentration factor

Ar � �I� SLr ��I� SL�ÿ1: �31�
Eq. (31) can be used with Eq. (7) to provide an estimate on the e�ective elastic moduli, which can be
shown to be equivalent to Eq. (19). It can also be used to estimate the average ®eld in phase r, given the
boundary condition e0:

The second question is whether the e�ective thermal stress tensor predicted by Eq. (28) is consistent
with that of Eq. (11), with the concentration factor given by Eq. (31). To answer this question, we ®rst
introduce Hill condition (Hill, 1963; Kreher, 1988; Nemat-Nasser and Hori, 1993)

hs�x�e�x�i � hs�x�ihe�x�i, �32�
which is valid for linear displacement or uniform traction boundary conditions. The following
conditions are used in the derivation: (1) the solid is statistically homogeneous; (2) no body forces exist
so that the equilibrium condition is satis®ed; (3) strain is derivable from elastic displacement. The strain
tensor e and stress tensor s need not be connected by certain constitutive equation. Hill condition,
combined with average strain theorem, gives us

hsII�x�eI�x�i � hsII�x�iheI�x�i � l�ye0: �33�
On the other hand, from the phase constitutive equation we obtain

hsII�x�eI�x�i � hsI�x�eII�x�i � hl�x�yeI�x�i, �34�
The two equations combined yields

l�ye0 � hl�x�yeI�x�i: �35�
Using the de®nition of the concentration factor, we ®nally obtained

l� � hAT�x�l�x�i, �36�
which is consistent with Eq. (11).

A desirable property of the multi-inclusion model is its connections with other micromechanics
approaches. As shown by Nemat-Nasser and Hori (1993), the e�ective elastic moduli predicted by multi-
inclusion model can correspond to the Mori and Tanaka (1973) approach, the self-consistent approach
(Hill, 1965), and Hashin and Shtrikman (1962, 1963) upper and lower bounds, if the elastic moduli of
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the matrix, of the yet unknown e�ective moduli, or the elastic moduli sti�er or softer than the
constituent materials of the composite, is assigned to the in®nite medium. The multi-inclusion model
thus provide a uniform framework for the micromechanical analysis of heterogeneous materials.

4. Composites with functionally graded interphase

Now let us apply the multi-inclusion model to composite materials with functionally graded
interphase. By functionally graded interphase we refer to an interphase with continuously varying
properties between matrix and reinforcement, as shown in Fig. 3. Phase 1 is the reinforcement, phase 3
is the matrix, both having homogeneous material properties. Phase 2, the interphase, however, has
spatially varying material properties. The reinforcement is considered to be perfectly aligned and
ellipsoidally shaped with dimensions a1, b1, c1, and a2, b2, c2: The ellipsoids are coaxial and of similar
shape so that a1

a2
� b1

b2
� c1

c2
� g: For a given composite, only g need to be ®xed while the actual

dimension of the interphase can be varied. The volume fraction of matrix is f3, and the volume fraction
of phase 1 and 2 can be obtained as f1 � �1ÿ f3�a1b1c1a2b2c2

� �1ÿ f3�g3 and f2 � �1ÿ f3��1ÿ g3�: Statistical
homogeneity is assumed for the composite material. The spatially varying material properties of the
interphase present a challenge to traditional micromechanics approximations. This problem, however,
can be solved by multi-inclusion model. The ®elds in phase 1 and 3 can be analyzed in an identical
manner as in the last section; the ®eld in the interphase 2 requires more analysis. As in the last section,
we will ®rst consider the loading ®eld due to the applied linear displacement boundary condition, and
then analyze the residual ®eld due to the temperature change.

4.1. Loading ®eld under the applied displacement

We assume the elastic moduli C2�r� is a radial function, so are the equivalent eigenstrain �eT
2 �r� and the

disturbance ®eld ed
2�r�, where r represents the normalized radial distance from the inner surface of the

interphase ranging from g to 1. For an in®nite small range dr, the material properties are considered to
be uniform so that Eq. (12) is still valid. The consistent equation (14) between the multi-inclusion and
multi-inhomogeneity thus gives us

Fig. 3. A composite with functionally graded interphase between reinforcement 1 and matrix 3. The dimension of reinforcement

and interphase are a1, b1, c1, and a2, b2, c2:
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�eT
2 �r� � L2�r�e1, �37�

where

L2�r� �
n�

Cÿ C2�r�
�ÿ1

Cÿ S
oÿ1

: �38�

The spatial distribution of strain and stress in the interphase are then

eI
2�r� �

�
I� SL2�r�

�
e1 �39�

and

sI
2�r� � C

�
I� �Sÿ I�L2�r�

�
e1: �40�

The average disturbance strain hed
2�r�i in phase 2 is then

hed
2�r�i �

1

4

3
p�a2b2c2 ÿ a1b1c1�

�c2
c1

�b2
b1

�a2
a1

S�eT
2 �r� dx dy dz � 3S

1ÿ g3

�1
g
r2�eT

2 �r� dr

� 3S

1ÿ g3

�1
g
r2L2�r� dre1: �41�

Let

�L2 � 3

1ÿ g3

�1
g
r2L2�r� dr, �42�

Eqs. (19) and (31) can then be applied to the composite materials with functionally graded interphase,
with L2 replaced by �L2 given by Eq. (42), to estimate the e�ective elastic moduli and analyze the
internal ®eld distribution in the composite due to the applied linear displacement at the boundary. Two
limiting cases immediately follow, one is when g approaches zero and phase 1 disappears; the other is
when g approaches unit and there is no interphase between the matrix and reinforcement.

4.2. Residual ®eld due to the temperature change

The analysis of residual ®eld in the interphase due to the temperature change is a little bit more
complicated, but can be pursued in a similar manner. Again, we assume C2�r� and l2�r� to be radial
functions. The spatial distribution of residual strain and stress in the interphase are then

eII
2 �r� � e1 � Se�2�r� �

�
I� SL2�r�

�
e1 � S

�
L2�r��Sÿ I� � I

�
eT
2 �r�: �43�

and

sII
2 �r� � C

�
I� �Sÿ I�L2�r�

��
e1 � �Sÿ I�eT

2 �r�
�
: �44�

If we de®ne

�
L2�Sÿ I� � I

�
eT
2 �

3

1ÿ g3

�1
g
r2
�
L2�r��Sÿ I� � I

�
eT
2 �r� dr, �45�
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then Eqs. (24), (27) and (28) are still valid, with L2 replaced by �L2 given by Eq. (42), and �L2�Sÿ I� �
I�eT

2 replaced by �L2�Sÿ I� � I�eT
2 given by Eq. (45). The thermal ®eld and e�ective thermal stress tensor

can then be obtained. Depending on whether the boundary is free or constrained, Eqs. (25) and (24) will
be used for e1: We also note that the temperature need not to be uniform in the composite, and its
spatial variation can be re¯ected in eT

2 �r�, if the temperature distribution is determined from the heat
conduction problem (when it is uncoupled from the deformation). So the e�ect of temperature gradient
can be analyzed in this framework without di�culty.

5. Numerical results and discussion

To demonstrate our theory we will show some numerical results in this section. The numerical
computation is implemented in a MATHEMATICA program, which is outlined in Table 1. In order to
verify the program, we have compared our calculations with some previous results by Qiu and Weng
(1991), who obtained the e�ective moduli of thickly coated particle and ®ber-reinforced composites by
the replacement method and the Hashin±Shtrikman upper and lower bounds. The materials they
considered correspond to a special class of functionally graded interphase which has uniform material
properties. The comparison between results from their calculations and the multi-inclusion model is
listed in Table 2. It is found that when we assign the moduli of matrix and reinforcement to the in®nite
medium, the multi-inclusion model agrees with the Hashin±Shtrikman lower and upper bounds,
respectively. Qiu and Weng's results are close to the lower bound, because the matrix is the softest
phase in the composite.

Table 2

Comparison on the thickly-coated particle and ®ber-reinforced composites; the Young's modulus of the matrix, inclusion, and the

coating are 1, 25, and 5 GPa, respectively, and the Possion ratio is 0.3 for all phases. The elastic moduli of the reinforcement and

matrix are assigned to the in®nite medium in model 1 and 2, respectively

Bulk modulus (GPa) Axial shear modulus(GPa)

c1=c2=c3 � 0:7=0:2=0:1 c1=c2=c3 � 0:1=0:2=0:7 c1=c2=c3 � 0:7=0:2=0:1 c1=c2=c3 � 0:7=0:2=0:1

Particulate composite Fibrous composite

Hashin±Shtrikman upper bound 12.24 2.33 6.07 1.19

Hashin±Shtrikman lower bound 6.16 1.25 3.10 0.61

Qiu and Weng (1991) 6.47 1.26 3.33 0.62

Multi-inclusion model 1 12.24 2.328 6.075 1.192

Multi-inclusion model 2 6.162 1.250 3.104 0.609

Table 3

Material properties of SiC reinforcement and intermetallic matrix

C11 (GPa) C12 (GPa) a11 (10ÿ6/8C)

SiC 504 150 4.86

Intermetallic matrix 176.67 103.67 9.25
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We then consider the SiC reinforced intermetallic matrix (Ti-24A1-11Nb). There is a interphase
between the reinforcement and matrix, with material properties (elastic moduli and thermal expansion
coe�cient) change linearly from the reinforcement properties to matrix properties (see Fig. 3), which are
listed in Table 3 (Huang and Rokhlin, 1996). Other property pro®le of the interphase can be studied but
will not be presented here. The volume fraction of matrix is ®xed at 60%, although its e�ect can also be
investigated. We will ®rst ®x the inclusion thickness, and consider the e�ect of inclusion aspect ratio b �
c1
a1
� c1

b1
on the e�ective moduli. The e�ect of normalized interphase thickness 1ÿ g will then be studied

with ®xed inclusion aspect ratio. Two composite geometries will be considered, one is perfectly aligned
circular cylindrical ®ber reinforced, and the other is spherical particle reinforced. Both e�ective
thermoelastic moduli and thermoelastic ®eld will be studied. In the calculation, the elastic moduli of
matrix and reinforcement are assigned to the in®nite medium, so that the e�ective elastic moduli
obtained correspond to the lower and upper bounds on the e�ective moduli of the composite.

Fig. 4. The e�ective thermoelastic moduli of composite with functionally graded interphase as function of inclusion aspect ratio b:
(a) elastic moduli; (b) thermal moduli.
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5.1. The e�ective thermoelastic moduli

We ®rst present the e�ective thermoelastic moduli of the composite as function of inclusion aspect
ratio b in Fig. 4, where (a) is for e�ective elastic moduli, and (b) is for e�ective thermal moduli. The
normalized interphase thickness is 0.5. It is found that C11, C66, and ÿl11 decrease with the inclusion
aspect ratio b, while C33, C44, and ÿl33 increase with it. Zero and in®nity aspect ratio of the inclusion
correspond to the laminated and ®brous composites, in which C33 is exact, veri®ed by the agreement of
the upper and lower bounds. Other e�ective moduli are exact for laminated composite, but not for the
®brous composite, as is clear from the ®gures. None of the moduli is exact for composites other than
these two special cases. We then present the e�ective thermoelastic moduli of the composite as function
of normalized interphase thickness. Figs. 5 and 6 show the e�ective elastic sti�ness tensor and e�ective
thermal stress tensor; (a) is for ®brous composite, while (b) is for particulate composite. Since all the
constituents are isotropic, so are the particulate composite; the ®brous composite is transversely

Fig. 5. The e�ective elastic moduli of composite with functionally graded interphase as function of normalized interphase thickness

1ÿ g: (a) ®brous composite; (b) particulate composite.
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isotropic, however. From the ®gures, it is found that the upper and lower bounds on all the components
are very close to each other, especially for C33 and C13 of ®brous composite. It is noted that C13 is
actually not bounded because it is a o�-diagonal component. Except for C13, which is not much a�ected
by the interphase thickness g, all other elastic moduli vary signi®cantly with respect to the change in g:
All the elastic moduli increase with g, because with volume fraction of matrix ®xed, increased g
represents increased volume fraction of reinforcement, which is sti�est constituent in the composite. The
e�ective thermal stress tensor, however, show a peak with respect to the change in g: It increases
initially, and then drops. Its variation with respect to g is much less prominent than that of elastic
moduli.

5.2. Loading and residual thermoelastic ®eld

Here we ®x the g to be 0.5, and study the ®eld variation in interphase with respect to di�erent loading
condition. We ®rst considered the applied tensile loading in x1 and x3 direction. For particulate

Fig. 6. The e�ective thermal expansion coe�cients of composite with functionally graded interphase as function of normalized

interphase thickness 1ÿ g: (a) ®brous composite; (b) particulate composite.
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composite, these two loading conditions produce equivalent result due to symmetry, as shown in

Fig. 7(c). When it is applied along x1 axis, s11 decrease with the increase of r, because the sti�ness of

the interphase decreases. s33, however, changes from compression state to tensile state. This is because

the interaction between constituents and the Poisson ratio e�ect. Although the di�erence between the

e�ective moduli is small when di�erent elastic moduli is assigned to in®nite medium, the di�erence

between the resulting loading ®elds is quite large. For the ®brous composite, when the applied loading is

along x1 axis, as shown in Fig. 7(a), the observation is similar to the particulate composite, although

larger stress is produced in x3 direction. When the loading is along x3 direction, as shown in Fig. 7(b),

s33 decrease with increase of r linearly, while s11 changes from compressive state to tensile state.

Now let us consider the thermal stress variation in the interphase. The boundary of the composite is

assumed to be free so that no traction is applied. Fig. 8(a and b) show the thermal stress variation in

®brous and particulate composites, respectively. Because the reinforcement has less thermal expansion

coe�cient than the matrix, and due to the constraint between di�erent phases, there are tensile stress in

Fig. 7. Loading stress in the interphase as function of radial distance from reinforcement: (a) applied s11 in the ®brous composite;

(b) applied s33 in the ®brous composite; (c) applied s11 in the particulate composite.
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the reinforcement, and compression stress in the matrix. In the interphase, the residual stresses drop
with increase of the radial distance from the reinforcement. Due to the symmetry, the s11 and s33 are
same in the particulate composite. In the ®brous composite, however, s33 is much larger than s11:

6. Concluding remarks

A multi-inclusion model is developed to study the thermoelastic behavior of composite materials with
functionally graded interphase. The properties of the interphase can be varied in an arbitrary manner
between reinforcement and matrix, and there could be a thermal gradient in the interphase. Explicit
expressions for the e�ective thermoelastic moduli and thermoelastic ®eld are obtained, and numerical
results for SiC reinforced intermetallic matrix are presented and discussed.

Fig. 8. Residual ®eld in the interphase as function of radial distance from reinforcement: (a) ®brous composite; (b) particulate com-

posite.
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